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C O G N I T I O N

Striatal stimulation enhances cognitive control and 
evidence processing in rodents and humans
Adriano E. Reimer, Evan M. Dastin-van Rijn, Jaejoong Kim, Megan E. Mensinger,  
Elizabeth M. Sachse, Aaron Wald, Eric Hoskins, Kartikeya Singh, Abigail Alpers, Dawson Cooper, 
Meng-Chen Lo, Amanda Ribeiro de Oliveira†, Gregory Simandl,  
Nathaniel Stephenson, Alik S. Widge*

Brain disorders, in particular mental disorders, might be effectively treated by direct electrical brain stimulation, 
but clinical progress requires understanding of therapeutic mechanisms. Animal models have not helped, be-
cause there are no direct animal models of mental illness. Here, we propose a potential path past this roadblock, 
by leveraging a common ingredient of most mental disorders: impaired cognitive control. We previously showed 
that deep brain stimulation (DBS) improves cognitive control in humans. We now reverse translate that result 
using a set-shifting task in rats. DBS-like stimulation of the midstriatum improved reaction times without affecting 
accuracy, mirroring our human findings. Impulsivity, motivation, locomotor, and learning effects were ruled out 
through companion tasks and model-based analyses. To identify the specific cognitive processes affected, we 
applied reinforcement learning drift-diffusion modeling. This approach revealed that DBS-like stimulation enhanced 
evidence accumulation rates and lowered decision thresholds, improving domain-general cognitive control. 
Reanalysis of prior human data showed that the same mechanism applies in humans. This reverse/forward trans-
lational model could have near-term implications for clinical DBS practice and future trial design.

INTRODUCTION
Deep brain stimulation (DBS) uses surgically implanted electrodes 
to modulate target brain circuits. DBS is highly successful in move-
ment disorders (1) and is being actively investigated for treatment 
of psychiatric disorders, including treatment-refractory obsessive-
compulsive disorder (OCD) (2) and major depressive disorder 
(MDD) (3). In all of these disorders, DBS’ mechanism of action 
remains unclear (1,  4). The lack of mechanistic understanding 
leads to difficulties in programming stimulation to individual pa-
tients’ needs, which contributes to clinical trial failures (4). Human 
neurophysiology studies offer hope for better stimulator program-
ming (4–6) but are similarly limited by the internal heterogeneity 
of psychiatric diagnoses (4, 7). In movement disorders, mechanis-
tic understanding arose from animal models (8), and those models 
are testbeds for new treatment paradigms (9). In contrast, psychi-
atric syndromes are difficult to model in animals, limiting therapy 
development (10, 11).

Diagnostic heterogeneity might be overcome, and reliable ani-
mal models created, by modeling constructs that cut across and 
form the basic ingredients of psychiatric illnesses (7, 11, 12). Cogni-
tive control is a particularly promising construct, because (i) it is 
highly relevant to multiple illnesses and (ii) it can be modified by 
DBS. Cognitive control is the ability to adjust and regulate thoughts 
and behavior in service of a specific goal (13). It involves the ability 
to suppress or override prepotent responses in favor of more adap-
tive responses. Cognitive control depends on a distributed brain 
network connecting prefrontal regions with the basal ganglia, stria-
tum, and thalamus (14, 15). Impaired cognitive control is linked to 

a wide range of psychiatric disorders (16), including MDD (17, 18), 
OCD (19, 20), and addictions (21). Conversely, improved cognitive 
control has been suggested to predict clinical response, mainly in 
MDD (17, 22).

Multiple studies have enhanced cognitive control with DBS-
like stimulation of the human striatum and internal capsule, 
with correlation between that enhancement and improvement 
in mood/anxiety symptoms (23–26). Others have shown similar 
effects with DBS of the subthalamic nucleus (STN) (27), which 
may connect through the internal capsule to the prefrontal cor-
tex (PFC) (28). Those studies were limited by windows of op-
portunity in clinical volunteers. They did not verify that the 
effects were repeatable or demonstrate mechanisms. The last 
point is critical, because cognitive control is often measured as 
response times (RTs) on a psychophysical task. An RT decrease 
might reflect improved cognitive control, but it might also rep-
resent a deleterious effect, such as impulsivity. If the task was 
sufficiently easy, participants might have been able to increase 
their speed without increased caution. Conversely, cognitive 
control has multiple subcomponents (13,  29). RT shortening 
might reflect improvement in motivation, attentional control to 
focus on task demands, precommitment to high-control behav-
iors (proactive allocation), adjustment to changing requirements 
(reactive allocation), or conflict processing (domain-general con-
trol). All are consistent with the subjective effects of striatum/
capsule stimulation, including increased motivation (30), ability 
to refocus attention away from distress (23), ability to effortfully 
resist symptoms (31), and drive toward pleasure and social in-
teraction (32, 33). Recipients also report less concern for nega-
tive outcomes (33, 34). Animal models could adjudicate between 
those mechanisms. Rodent models would be particularly useful, 
because rodents have a range of toolkits for manipulating spe-
cific neuronal subpopulations and circuits (35). Further, there is 
rodent-human homology in circuits believed to underpin cognitive 
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control (36, 37). Related functions such as extinction learning are 
improved by stimulation of these homologous structures (38).

Here, we leveraged that homology to develop a reverse transla-
tional, mechanistic rodent model of psychiatric DBS. First, we show 
that human RT enhancements can be replicated in rodents by stim-
ulating the midstriatum and embedded corticofugal fibers. This en-
hancement replicates a dorsoventral anatomic gradient observed in 
humans. We then applied this model to dissect DBS’ cognitive ef-
fects. We explore the potential mechanisms above, and through 
multiple behavioral paradigms and computational modeling, show 
that DBS improves task performance by improving domain-general 
cognitive control. Physiologically, we link this improvement to the 
simultaneous modulation of multiple prefrontal regions, possibly 
through their corticothalamic projections. Closing the translational 
circle, we demonstrate that the same cognitive mechanism is present 
in the original human data, showing that the animal model has ex-
planatory power.

RESULTS
Replicating DBS’ effects on cognitive control in rodents
We probed cognitive control in rats using a set-shift task where rats 
shift between cue (light) and spatial (side) rules (Fig. 1, A to D; figs. 
S1 and S2, A to B; and table S1) (39, 40). Human cognitive control 
enhancement depends on stimulation of specific sites in the mid/
dorsal striatum and internal capsule (23). We mapped the effects of 
DBS-like stimulation at homologous subregions of rat striatum 
(n  =  35; Fig. 1E). This model replicated the human findings. 
Midstriatum stimulation significantly improved RTs (β = −34 ms 
and P < 2.7 × 10−17); other sites did not (P > 0.05; Fig. 1F and table 
S2). As in humans, there was no significant effect on response ac-
curacy or any other outcome (P > 0.05; Fig. 1G; fig. S2, C and D; 
and tables S3 to S5). The RT improvement was consistently pres-
ent across animals and days (fig. S2, E and F). Raw behavioral re-
sults are summarized in fig. S3 (A to D). RT improvement was not 
explained by changes in general activity (P > 0.05; fig. S4, A to C 
and E, and tables S6 to S10), motivation (P > 0.05; fig. S4, D and E, 
and tables S9 and S10) or lesion effects (P > 0.05 and table S2). It 
required the higher frequencies generally used for DBS. Twenty-
hertz stimulation worsened the total errors (β = 0.23 and P = 5.50 × 
10−4; fig. S5 and table S11) and RTs (β = 25 ms and P = 2.96 × 10−4; 
fig. S5 and table S12) in an independent cohort that also replicated 
the results of the initial 130-Hz study (β = −48 ms and P = 1.54 × 
10−34; fig. S4 and table S12). Twenty-hertz stimulation had no effect 
on the probability of correct responses (fig. S5 and table 13) but did 
increase overall session duration (β = 188.395 and P = 0.004; fig. S5 
and table S14). The midstriatal RT improvement was also present 
across sexes (β = −17 ms and P = 0.001), with a significantly larger 
effect size in females (β = −80 ms and P = 5.03 × 10−19) but no 
baseline sex differences (P > 0.05; fig. S6, A and B, and table S15). 
There were also no sex- or stimulation-related differences in errors 
(P > 0.05; fig. S6C and table S16).

RT improvements caused by midstriatal stimulation are not 
related to impulsivity
We tested for increased impulsivity or motivation using the five-
choice serial reaction time task (5-CSRTT; n = 6; Fig. 1H, fig. S7, 
and tables S17 and S18) (41). There was no change in premature 
responses, the most common impulsivity metric (P = 0.35; Fig. 1I 

and table S19). 5-CSRTT RTs increased (β = 49 ms and P = 0.005; 
Fig. 1I and table S20), which may reflect improved cognitive control 
in a situation where response withholding is essential. Stimulation 
also increased omissions (β = 0.45 and P = 1.06 × 10−8; Fig. 1I 
and table S21), arguing against an increase in general motivation. 
There was no change in accuracy (P = 1.000; Fig. 1I and table S22). 
Raw behavioral results for the 5-CSRTT are summarized in fig. 
S8 (A to D).

Midstriatal stimulation nonspecifically increased 
proactive control
Cognitive control involves both planned, proactive adaptive re-
sponses and reactive cancellation of maladaptive responses (13, 29). 
We examined whether midstriatal stimulation during set-shift 
affected either process. Rats frequently nosepoked during the 
intertrial interval (ITI), and we reasoned that these behaviors 
might reflect rehearsal or planning (proactive control). Support-
ing that concept, during the ITI, rats showed both early nose-
pokes that were more common after incorrect responses, then a 
ramping pattern of late-ITI nosepokes that were more common 
after correct responses (Fig. 2, A and B). After incorrect re-
sponses, ITI nosepokes were commonly directed to the port that 
would have been correct (β = 0.53 and P = 7.09 × 10−18; Fig. 2A, 
left inset, and tables S23 and S24). After correct responses, rats 
initially showed reduced early-ITI poking (β = −0.24 and P < 0.001; 
table S23) but increased their activity in the late period (β = 0.12 
and P  <  0.001; table S23). Similarly, after correct responses, 
nosepokes were more common in the port that was just reward-
ed both in the early ITI (β = 8.27 and P < 0.001; table S25) and 
late ITI (β = 1.89 and P = 7.98 × 10−302; Fig. 2B, right inset, and 
table S25). This pattern could reflect proactive control, because 
on side blocks, it is possible to plan the correct response before 
a trial begins. Thus, ITI pokes might reflect rehearsal to keep a 
desired response in working memory. Accordingly, rats were 
more likely to poke a side they had rehearsed during the imme-
diately preceding ITI, but only if they ignored the cue light and 
chose the nonilluminated port (β = 1.84 and P = 4.50 × 10−129; 
Fig. 2C and table S26). Further, late-ITI nosepokes in the middle 
(trial initiation) port predicted faster RTs on the subsequent 
trial (β = −36 ms and P = 1.66 × 10−15; Fig. 2D and table S27). 
Also consistent with a proactive control effect, RT improvement 
was augmented by rehearsal. If a rat poked both the middle  
and the port it would choose on the upcoming trial (a “choice” 
poke), the RT improvement was greater (β  =  −12 ms and 
P = 0.021; Fig. 2D and table S27), whereas nosepokes into a port 
discordant with the upcoming trial behavior (“nonchoice” pokes) 
had no effect beyond that of the accompanying middle-port 
poke (P = 0.445; Fig. 2D and table S27). Proactive rehearsal did 
not, however, explain the RT effect of stimulation, because stim-
ulation did not specifically increase it. Rather, midstriatal stim-
ulation increased all forms of ITI pokes (all P < 6.42 × 10−3; Fig. 
2E and table S28), including nonchoice pokes unrelated to  
cognitive control.

Stimulation improves cognitive control by improving 
decisional efficiency
The RT decrease could also reflect reactive adaptation or a general im-
provement in conflict resolution. To explore these, we fit a reinforce-
ment learning–drift diffusion model (RLDDM) (42) to the behavior 
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Fig. 1. Behavioral testing paradigms and stimulation outcomes. (A to D) Set-shift task. (A) Illustration of the set-shift task design. Rats must nosepoke to either an illuminated hole 
(light rule) or ignore the light and nosepoke on a specific side of the chamber (side rule). The rules are not cued and shift after the rat has completed five correct trials of the current 
rule. Errors reset to the beginning of the current five-trial block. (B) Probability of error plotted as a function of the current rule. (C) Distribution of reaction time (RT) separated by rule 
type. (D) Learning curves showing error probability across trials following each rule shift. (E to G) Stimulation experiment. (E) Histologically confirmed sites of implant (n = 35 rats 
total; midstriatum n = 8, ventral striatum n = 9, dorsomedial striatum n = 9, and dorsolateral striatum n = 9). The midstriatum target was the only target tested during the 5-CSRTT 
(see below, n = 6), whereas all four targets were tested for the primary set-shift experiment (SS). (F) Distributions of RT as a function of stimulation type, expressed as a percent change 
from stimulation-off. Distributions were computed over rats; each dot shows the median for one rat. (G) Distributions of percent change in error count during whole-session stimula-
tion. (H and I) 5-CSRTT. (H) Task schematic. A trial began when a rat entered the food magazine. After a 5-s interval, a brief light stimulus was presented in one of five ports. If the rat 
poked the lit aperture, it received a food pellet (“correct response”). If the rat responded before the light was presented (“premature response”), in an incorrect aperture (“incorrect 
response”), or did not respond within the defined time period (“omission”), it received no reward. (I) Outcomes, following the plotting conventions of (F) and (G). *P < 0.05; all P values 
represent Wald Z tests of model parameters from GLMMs. See Materials and Methods for formulae and tables S1 to S3 (set-shift) and S19 to S22 (5-CSRTT) for statistical details.
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(Fig. 3A and fig. S9), incorporating both reactive reinforcement learn-
ing [RL; (29, 43)] and diffusion-based evidence accumulation [DDM; 
a model of conflict resolution (44)]. Like the traditional DDM, the 
RLDDM has trial-independent boundary separation and nondecision 
time parameters that reflect the evidence required for a decision and 
the speed of sensorimotor processing, respectively. However, unlike 
the traditional DDM, the drift rate and bias terms in the RLDDM vary 
trial to trial as a function of the difference in expected rewards from the 
RL component. These two terms can capture efficacy of evidence ac-
cumulation and the ability to precommit to a high-probability option, 
respectively (Fig. 3A). The RL component included an adaptive learning 
rate and forgetting function based on a model selection analysis (fig. 
S10A). Simulated responses from the RLDDM strongly matched em-
pirical behavior and psychometrics (Fig. 3, B to D, and fig. S10, B to E). 

The ITI behaviors in Fig. 2 were captured in the RLDDM’s bias term, 
which incorporates value information specifically related to the side 
rule (Fig. 3D). Midstriatal stimulation did not alter any learning com-
ponents of the model, arguing against a reactive control mechanism 
(Fig. 3E). Rather, it altered evidence accumulation components in a 
specific fashion that promotes efficient conflict resolution. Stimulation 
lowered the boundary separation term [probability of direction 
(pd) = 99.85%, median = −0.334, and 1.05% in region of practical 
equivalence (ROPE)], which reflects the amount of evidence needed to 
reach a choice. This on its own would decrease RTs but also increase 
errors, because narrower boundaries are more easily reached by noise. 
However, stimulation also increased the drift rate (pd = 99.25%, 
median = 0.441, and 2.925% in ROPE), which drives the model toward 
the correct choice. When combined with tighter bounds, this leads to 

Fig. 2. Precommitment behaviors during ITIs of the set-shift task. (A and B) Probability of poking the mid (trial initiation) and side ports after incorrect (A) and correct 
responses (B). Thick lines show the mean over all animals and sessions, whereas light shaded lines show individual animals. Each plot is a kernel density estimate of the 
distribution, using a Gaussian kernel with 0.2-s SD. “Choice” and “nonchoice” pokes are pokes in the ports that were and were not chosen in the preceding trial, respec-
tively. We emphasize “early” (first 2 s) and “late” (last 2 s) behavior. (C and D) Effects of ITI behavior on the subsequent trial. In these panels, choice and nonchoice now refer 
to the upcoming trial rather than the preceding trial as in (A) and (B). (C) Effect of ITI pokes on subsequent trial behavior (precommitment) during trials when the rat ig-
nored the cue light (for example, during a side rule). Distributions show the probability of choosing the left or right port based on which port was most often poked 
during the Late portion of the preceding ITI. (D) Effect of ITI pokes in the late portion of the ITI on subsequent decision times. Plots show the distribution of RTs of the 
subsequent trial, conditioned on different types of ITI behavior. Asterisks above individual distributions indicate a mean different from the distribution when no ITI pokes 
occurred. (E) Distributions of late ITI poking into the mid and side ports with (hatched) and without midstriatal stimulation. Asterisk above each distribution reflects a 
significant difference between stimulation on and off. All P values represent Wald Z tests of model parameters from GLMMs; see Materials and Methods for formulae.
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more efficient conflict resolution, where the system needs less time to 
reliably reach the correct choice. There was a much smaller stimulation 
effect on the bias term (pd = 88.525%, median = 0.296, and 15.425% 
in ROPE), which connects the RL side-specific valuation to the 
DDM. These three factors explained nearly 100% of the stimulation ef-
fect (Fig. 3F). This modeling implicates general conflict resolution, 
rather than specific strategies for control allocation, as the primary 
mechanism of cognitive control enhancement.

The RLDDM also explained the nonspecific increase in choice 
and nonchoice pokes described in Fig. 2E. Midstriatal stimulation 
only increased ITI poke behaviors at low bias levels, when rats had 
relatively little information about the correct answer to rehearse 
(fig. S11). This suggests that stimulation might reduce the gating 
threshold for converting internal preparation (bias) to an overt 
behavior (ITI poke).

Stimulation effects on cognitive control correlate with 
modulation of the PFC
Capsule/striatum stimulation is believed to involve retrograde modu-
lation of the PFC (4, 28, 45), with mixed excitatory-inhibitory effects 
(24, 46). Consistent with this model, striatal stimulation increased 
c-fos expression throughout the PFC (fig. S12, A and B). The im-
provements modeled in Fig. 3 appeared to arise from prelimbic (PL) 
and infralimbic (IL) cortices, given that in these regions c-fos expres-
sion correlated moderately (r >  0.24) with RLDDM parameters. 
Boundary and drift rate changes were separable, with the former 
loaded more onto PL and the latter more onto IL cortices (fig. S12C).

Decisional efficacy changes translate across species
We finally tested whether these rodent findings explained the 
original human control improvements (23, 24). In those studies, 

Fig. 3. Midstriatal stimulation improves evi-
dence processing and conflict resolution. (A) Il-
lustration of the RLDDM. The RLDDM first assigns 
values V to the ports on the basis of its underlying 
estimates Q of the current value of the sides (left 
and right) and the light. The model then makes 
choices through a drift-diffusion process con-
trolled by three key parameters: the decision 
threshold (boundary separation, α) which deter-
mines how much evidence is needed for a choice; 
the speed of evidence accumulation (drift rate, ν); 
and the time for nondecision processes (τ). The 
total value difference between options deter-
mines the drift rate, whereas the difference be-
tween sides determines the bias β. Trials with 
high value differences lead to shorter reaction 
times and more consistent choices (red versus 
blue curves above). After the port choice, values 
Q are updated on the basis of a RL process, with γ 
scaling the magnitude of errors and F controlling 
decay of unchosen option values. The model was 
fit hierarchically to the data from all rats, allowing 
individual-specific estimates of model parame-
ters and their change with stimulation. (B to D) 
Posterior predictive simulations of behavioral 
outcomes for models (orange) and rat behavior 
(purple) over 4000 hierarchical posterior draws; 
see Materials and Methods. Shading shows the 
95% highest density interval across animals and 
trials. (B) Choice as a function of the difference in 
value between the left and right sides (ΔV), where 
higher x-axis values represent a higher value for the 
left port. (C) RT as a function of the difference in 
value between the left and right sides, with the 
same conventions as (B). (D) Probability of an ITI 
poke as a function of the model’s bias term. Higher 
x-axis values correspond to greater bias β toward 
the left port, and the y axis shows the percentage 
of left versus right pokes during the ITI. (E) Distri-
butions of stimulation effect on model parame-
ters over 4000 posterior draws. The median of the 
distribution is indicated by the solid line, and the 
95% highest density interval is in orange. The gray shaded area around zero represents the ROPE for a null effect (effect size less than 0.1). (F) UpSet plot illustrating 
the percentage of the stimulation-related decrease in RT explained by stimulation effects on RLDDM model parameters. Each row corresponds to a parameter, with the bar 
indicating the total percentage of the stimulation-RT effect explained by that parameter. Each column corresponds to an intersection between parameters, with the filled-
in dots indicating which parameters are part of the intersection. The upper panel indicates the percentage of the stimulation-RT effect that is unique to that intersection. 
The median and 95% highest density interval across posterior draws from the model are shown by the point and the bar, respectively.
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participants performed a multisource interference task (MSIT; Fig. 
4A), where trials switched rapidly and unpredictably between two 
types. We thus fit DDMs without the RL component (Fig. 4B) to the 
participants from (23) who received the mid/dorsal striatal stimula-
tion that most improved RT (fig. S13, A to D). Stimulation again 
increased the drift rate (Fig. 4C) (pd = 0.978, median = 1.31, and 
1.47% in ROPE). This effect was present in four of five participants 
(Fig. 4D) and directly correlated with the RT improvement (Fig. 
4E). Model selection argued against a change in the boundary sepa-
ration (fig. S9B), as would be expected given the differing structure 
of the rodent and human tasks (see Materials and Methods and Dis-
cussion). We replicated these findings in an independent dataset 
from (24) (fig. S14, A to C; pd  =  0.996, median  =  0.62, and 
1.03% in ROPE).

DISCUSSION
We developed a reverse translational model of psychiatric DBS, with 
homology to and explanatory power for effects previously shown in 
humans. This model highlights the power of a domain-focused ap-
proach. There are no strong animal models of psychiatric illness, be-
cause the core features of those illnesses are subjective self-reports 
(15, 16). Experts have repeatedly proposed to instead model cognitive 
and emotional deficits that serve as core “ingredients” of mental dys-
function (7, 47). We show the first working example of such a model. 
Our example uses cognitive control, but other domains of function 
such as risk-reward evaluation also change with DBS (48, 49), and the 
same approach likely applies.

Our model could have clinical implications. Impulsivity has 
been proposed as a mechanism of DBS’ therapeutic effect, for ex-
ample, by making a patient with OCD less sensitive to the “risk” of 
foregoing a ritual (34). Our findings suggest that impulsivity is dis-
sociable from cognitive and likely clinical improvement. Similarly, 
our findings explain recent anatomic papers. Striatal DBS’ efficacy 
correlates with engagement of corticofugal fibers linking the PFC 

to the STN (50, 51). That tract aligns with our midstriatal target. In 
primates, this part of internal capsule carries corticofugal fibers 
from the dorsal anterior cingulate (dACC), a structure associated 
with cognitive control (13, 14, 37). We showed increased c-fos in 
PL, a homolog of dACC that projects through the midstriatum 
(36). Primate cognitive control and DBS’ effects also load onto the 
lateral PFC (13,  14,  24), which has no known rodent homolog. 
Nevertheless, the alignment across other regions demonstrates the 
relevance of a cross-species model.

We used drift-diffusion modeling (DDM) to elucidate mecha-
nisms of cognitive change, in part because DDM parameters have 
broad evidence for utility in describing psychiatric disorders (52). 
Elevated boundary separation (53, 54) and reduced drift rate (55, 56) 
are consistently seen separately and together (57,  58) for patients 
compared with controls. Consistent with a transdiagnostic construct, 
those findings span multiple disorders. Across disorders, DDM pa-
rameter changes predict elevated reaction times on decision-making 
tasks. This has been interpreted as “sluggish” but not less-accurate 
evidence accumulation/conflict resolution. Unexpectedly, very few 
studies have investigated how psychiatric treatments affect DDM pa-
rameters. Noninvasive stimulation of the PFC can reduce drift rate 
(59) or increase a bias toward effortful decisions (60) but these effects 
have only been investigated in healthy participants. Outside of cogni-
tive control, STN DBS for Parkinson’s has been associated with im-
pulsivity, reflected in a decrease in boundary separation (61, 62). Our 
finding of a stimulation-dependent, concurrent decrease in bound-
ary separation and increase in drift rate has not previously been re-
ported but represents a direct inversion of the typically observed 
deficits in these parameters for psychiatric patients (57, 58). Al-
though a decrease in boundary separation alone would likely indi-
cate impulsivity and result in more errors, the increased drift rate 
has a compensatory effect, leading to a net improvement in evidence 
processing (63, 64).

This and similar animal models could improve therapy develop-
ment through new stimulation paradigms by enabling more rapid 

Fig. 4. Changes in evidence processing identi-
fied in rats also explain previously reported 
stimulation-dependent changes in human cog-
nitive control. (A) Schematic of the MSIT. In each 
trial, participants are shown three numbers and 
must identify the number that differs from the 
other two by pressing a corresponding button (1, 
2, or 3). In nonconflict trials (e.g., “020”), the target 
number appears in its matching position (posi-
tion 2 contains “2”). In conflict trials (e.g., “322”), 
the target number appears out of position (posi-
tion 1 contains “2”) and is flanked by other num-
bers that could be valid targets, creating response 
interference. In (23, 24), we reported that striatal/
internal capsule stimulation improves RT on this 
task, similar to the set-shift RT improvement re-
ported in previous figures. (B) Model schematic. 
We fit a standard DDM, exploring the potential effect of striatal stimulation on boundary separation α and drift rate ν. On the basis of Fig. 3’s results, we did not model 
potential effects on nondecision time τ. (C) Distributions of stimulation effect on drift rate over 4000 posterior draws. The median of the distribution is indicated by the 
solid line, and the 95% highest density interval is in orange. The gray shaded area around zero represents the ROPE for a null effect (effect size less than 0.1). (D) Individu-
al distributions of drift rate changes for five participants, over 4000 posterior draws, on the same scale as (C). (E) Correlation between drift rate change and stimulation-
induced RT change. Each dot represents one participant, specifically the RT change plotted against the point estimate of the drift rate change [median of the distributions 
shown in (D)]. The solid line shows a line of best fit. The shaded region represents the 95% highest density interval of this line. We calculated this by running a separate 
correlation for each posterior draw [distributions in (D)] against the change in median RT.
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screening. For instance, our RT-based measures of cognitive control 
can be tracked in real time to identify parameters that optimally im-
prove them (65), which may enable rapid screening of novel stimu-
lation paradigms. Similar screening in humans would require weeks 
of expensive hospitalization (5, 6). Robust animal models could also 
improve patient selection. Because mental illnesses are internally 
heterogeneous (7, 11), neurostimulation of any given target will not 
work for most patients (4). Methods are emerging to identify pa-
tients whose symptoms arise from specific dysfunctions, including 
cognitive control (17). Pairing that identification with cognition-
optimized neurostimulation could improve outcomes. Our map-
ping of DBS’ effects to specific circuits could also yield physiologic 
biomarkers for closed-loop DBS. We (4) and others (66) have ar-
gued that those biomarkers will be difficult to find for ill-defined 
constructs such as “depression” but might well exist for robustly 
quantifiable metrics such as DDM parameters. Last, our results en-
able causal neuroscience. Nonhuman primates have strong internal 
capsule and prefrontal homology to humans (36). Striatal stimula-
tion could manipulate subprocesses of cognitive control and uncover 
their neural substrates.

Striatal stimulation altered drift rate across species but altered 
boundary separation only in rats. This is due to the task structure 
(see Materials and Methods). Rats require multiple trials to learn 
each set-shift rule (Fig. 1). The human MSIT switched between high 
and low conflict (analogous to the set-shift rules) every one or two 
trials. Rats can precommit to a strategy (following the light or going 
to a specific side) before they initiate a trial and can learn this strat-
egy during a block. Figures 1 to 3 show that both processes occur. 
Strategic anticipation decreases boundary separation, because less 
sensory evidence is needed to decide. Humans in MSIT can only 
process the sensory evidence once it is available, which loads onto 
the drift rate. Similarly, whereas rats frequently make errors, human 
performance on MSIT is almost always above 95% accuracy (23, 24). 
Without a high error rate, it is impossible to detect boundary sepa-
ration changes, because that DDM term captures speed-accuracy 
tradeoffs. In a different task design, with long runs of high- or low-
conflict trials, humans do show within-task learning (67), which 
enables better separation of the boundary separation and drift rate 
terms. Our rodent results predict that DBS effects on both terms 
should be dissociable by modulating internal capsule fibers de-
scending from Brodmann area 24 (anterior cingulate, PL homolog, 
and boundary separation) versus Brodmann area 25 (subgenual cin-
gulate, IL homolog, and drift rate) (36). This is not trivial, because 
the only way to identify such circuit-specific neurostimulation pa-
rameters would be through diffusion tractography, which is chal-
lenging in the internal capsule (68).

Neurobehavioral correlations highlighted the PL and IL cortices, 
but we did not see strong differences in c-fos evoked by stimulation 
at different striatal sites (fig. S8B), despite their different behavioral 
effects. Anatomy suggests that ventral stimulation should preferen-
tially evoke c-fos expression in the mOFC (45), but mOFC c-fos was 
numerically higher for midstriatal and dorsolateral stimulation. 
This discordance is explained by our stimulation paradigm. First, 
our current (300 μA) likely spreads well beyond the electrode tip, 
creating overlap between different targets’ electric fields. Second, we 
stimulated for an hour before euthanizing for c-fos. Corticofugal fi-
bers and striatal neurons form recurrent interconnected loops (69). 
Stimulation might have propagated through these connections to 
affect the cortex broadly. Third, 130-Hz stimulation has complex 

excitatory/inhibitory effects (24, 46). C-fos only reflects excitation 
and thus may not fully reflect cortical engagement.

This study had specific limitations in the model species, task, ran-
domization approach, and target. We used outbred rats, not a disease 
model. This could limit the translatability of results. However, as 
noted above, it is not clear that any putative “model of ” psychiatric 
illness reflects human pathophysiology (10, 11). Rat models of trans-
diagnostic impairments, such as compulsivity, exhibit motor altera-
tions that could confound our results (70, 71). Given that we (24) and 
others (26) have shown cognitive control improvements in psychiat-
rically diagnosed patients, we believe that the results would general-
ize to rodents or humans with cognitive impairments. Regarding the 
task, we used set-shifting to measure the broader construct of cogni-
tive control. This is the most reported measure of cognitive control in 
rodents. Other assays of cognitive flexibility, such as reversal learn-
ing, have less need to suppress a prepotent response (72). This sup-
pression of competing rules is critical; there was no RT effect of DBS 
in tasks without interference (24). There was similarly no RT effect of 
interference in a rodent flanker paradigm (73), hence why we did not 
use that task to model the human MSIT. Human internal capsule 
stimulation with a different cognitive control task, however, pro-
duced nearly identical RT improvement (26). Further, stimulation of 
comparable corticofugal fibers at a different target, the anteromedial 
STN, improved performance on a human extradimensional set-shift 
task that closely resembles our rat task (74). An important limitation 
is that we did not compare different stimulation sites within the same 
animal; we implanted separate cohorts with electrodes implanted in 
our four targets. Hence, each stimulation effect was measured against 
a slightly different baseline. The random intercepts in our models 
control for this, but slightly less robustly than our human work (23) 
that permitted direct within-participant comparison of different 
stimulation sites.

Another potential limitation is that our study differs from another 
recent attempt to model DBS using stimulation of the more posterior 
internal capsule in mice (46). In rats, the homologous fibers to the hu-
man anterior limb of the internal capsule are diffusely interpenetrated 
throughout the striatal gray matter rather than forming a cohesive 
tract. As a result, electrical stimulation of our optimal mid striatal tar-
get would have activated both passing corticofugal fibers and local 
striatal cell bodies. On the other hand, this is also true of DBS in hu-
mans; the relatively high currents used in most studies create tissue 
activation volumes that capture multiple aspects of striatum (75). We 
chose a more anterior target because the corticofugal fibers and synap-
tic terminals from the PFC have two useful properties when the im-
plant is >1.2 mm anterior to bregma. First, because sensory-motor 
components synapse more posteriorly and PFC components synapse 
more anteriorly in the striatum (76), targeting an anterior plane more 
directly modulates the PFC, which is classically implicated in cognitive 
control. Second, because the striatum is overall larger in these more 
anterior planes, corticofugal fibers from different PFC subregions are 
more widely separated and can be separately activated (77). In con-
trast, in the rat posterior striatum or internal capsule, PFC projections 
are intermixed with motor/sensory fibers and more tightly packed to-
gether. This makes it much more difficult to map out the effects of dif-
ferent cortical sub-bundles. Thus, although there may be other ways to 
model DBS’ effects on cognitive control, the overall results and prior 
literature make this anterior placement a particularly useful model. At 
the same time, we do note that we modulated both striatal neurons and 
corticofugal fibers; a more posterior placement in the capsule would 
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have permitted pure white matter stimulation, and comparing these 
might be valuable.

Whereas we describe above the translational implications of our 
findings/model, there are also important cautions. First, although 
cognitive control is impaired across many/most mental disorders 
(16, 21), control deficits may arise from multiple mechanisms. In that 
case, stimulation to improve cognitive control through the mecha-
nism shown here may not treat all patients with cognitive control 
deficits. Newer work links control deficits to specific functional neu-
roimaging signatures (17, 18), suggesting that a relatively homoge-
nous population may be detected and treated, but this remains to be 
proven in clinical trials. Second, even in the presence of cognitive con-
trol impairments, human psychiatric disorders encompass a broad 
array of factors that cannot be captured in any one construct. Our 
model can likely identify biomarkers and inform targeted therapies 
for cognitive control impairments, and we have detailed how those 
biomarkers could be used to guide treatment (4, 65). It remains to be 
proven that modifying cognitive control leads to improved subjective 
well-being. There is evidence for this; our original studies reported 
subjective improvements in anxiety/distress (23), and neuroimaging 
studies suggest that cognitive control biomarkers mediate improve-
ments in depression (17, 22). Prospective trials are still needed.

In summary, we show that a circuit-directed intervention and its 
cognitive mechanisms translate across species. These findings may 
enable a new set of psychiatric interventions. Knowing cognitive 
mechanisms should allow identification of patients who may benefit 
(specific deficits in cognitive control) and personalized intervention 
matched to individual biology (using cognitive change as a “read-
out” of target engagement). In parallel, animal studies using this 
model could develop more reliable interventions, e.g., stimulation 
approaches that more reliably produce the desired cognitive change. 
Our findings similarly can inform the basic science of cognitive con-
trol and executive function by demonstrating that causal manipula-
tions can affect specific subcomponents of those processes.

MATERIALS AND METHODS
Study design
We sought to develop an animal model of the core effect in our prior 
clinical work (23, 24): that 130-Hz stimulation of striatum and its pass-
ing corticofugal fibers leads to faster RTs in a task that requires cogni-
tive control and that this improvement occurs on all trial types. We 
further sought to replicate the finding of (23) that the effect varies with 
the striatal region being stimulated, with the largest effects from stimu-
lation slightly dorsal to the ventral striatum. We thus tested a set-shift 
task that, similar to human tasks, requires inhibition of a prepotent 
response (see below). Electrical stimulation parameters were chosen as 
homologs of those used in prior work (23–25), and statistical testing of 
the primary outcome similarly followed those papers. Partitioning of 
the striatum into stimulation zones (see below) was based on theoreti-
cal suggestions of a dorsal/ventral and lateral/medial functional segre-
gation (15,  78), anatomic studies showing a specific topography of 
corticofugal fibers passing through different striatal subregions (77), 
and prior work suggesting cognitive benefits of stimulation in the mid-
striatum (38). We performed secondary (unplanned) analyses through 
drift-diffusion and related models because those models are well suited 
to dissecting decision-making under response conflict (44, 52). 
Because the initial work used only male rats, we ran an additional 
mixed male/female cohort to check for sex differences, which was not 

part of the initial study plan. All experiments were approved by the 
University of Minnesota Institutional Animal Care and Use Commit-
tee (protocols 1806-35990A and 2104-39021A) and complied with 
National Institutes of Health guidelines.

The primary set-shift experiment design and analysis were pre-
planned, with the four stimulation sites selected on the basis of prior 
theory/anatomic subdivisions of the rodent striatum as above and 
the analysis method (see below) selected to match the generalized 
linear models (GLMs) used in prior human studies (23, 24). Animal 
counts and number of sessions were predetermined by a power 
analysis. Because we report four behavioral outcomes from the same 
task (see below), we targeted 80% power at a Bonferroni-corrected 
α = 0.0125. Because a GLM is functionally equivalent to a repeated-
measures analysis of variance (ANOVA), we used that power esti-
mator within G*Power 3.1. Assuming eight measurements per 
animal and four groups, the canonical medium effect size (f = 0.25) 
required 24 animals (seven per group). To provide a safety factor, we 
empirically increased this to eight animals per group and 16 mea-
surements per animal. We then allocated and implanted at least 
10 animals per primary group (fig. S1A) to ensure that we had suf-
ficient power after animal exclusions for technical failures. Animals 
were assigned to one of the four implant targets without a predeter-
mined order or formal randomization procedure. There was no 
blinding of experimenters or analysts, although analyses were pre-
specified; see below.

We ran additional cohorts of the set-shift experiment, targeting 
only midstriatal stimulation on the basis of the primary findings. 
This aimed to validate the initial result and to test further controls, 
namely, different stimulation frequencies and sex differences. Be-
cause this study involved fewer comparisons, the effect direction 
was known, and because we had observed in the primary experi-
ments that effect sizes were larger than anticipated, we empirically 
decreased this to planned samples of five rats per group. As de-
scribed in the main text, these samples fully replicated the result of 
the main experiment.

The 5-CSRTT sample size was preplanned to be identical in size 
and protocol to the primary set-shift sample. We similarly planned 
to do this experiment only if the set-shift experiment identified a 
behaviorally effective stimulation site. The analysis strategy was pre-
planned to use GLMs with the same fixed/random effects as set-
shift. Because of animals that did not learn the task or had off-target 
electrodes, we eventually implanted a total of 27 animals rather than 
the 10 initially planned (fig. S5).

The c-fos regions for analysis and neurobehavioral correlation 
strategy against set-shift and 5-CSRTT behavior changes were simi-
larly preplanned. No power analysis was conducted for this compo-
nent, because our emphasis was on adequate power for the behavioral 
effect, and we did not plan to perform inferential statistics. With the 
large number of planned assessment regions, behavioral outcomes, 
and stimulation sites, a well-powered study would require hundreds 
of animals.

Set-shifting task
The operant set-shift task (Fig. 1A) was modified from (39, 79) and 
described in detail in a previous study (80). In brief, animals learned 
and then shifted their responses between two distinct perceptual 
discrimination rules or dimensions: a cue-driven “light” rule and a 
spatial “side” rule. Rats were required to poke the illuminated middle 
nosepoke hole to initiate a trial. In all trials, one of the two peripheral 
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nosepoke holes was then illuminated. The light discrimination rule 
required the rats to poke the illuminated nosepoke hole, regardless of 
its spatial location. The side rule required that the animals poke at a 
designated spatial location across trials (left or right), regardless of 
which one was illuminated. The light rule is easier because it requires 
a simple response to a visually salient stimulus and thus creates a 
prepotent response tendency that must be overcome on side trials 
(see Fig. 1, B to D). Rats were reinforced with a single reward pellet 
for each correct response. After five consecutive correct choices, the 
rule was switched to the other dimension, requiring rats to shift their 
behavior to continue receiving rewards. The sequential trials on a 
single rule, regardless of correct/incorrect choice, were grouped into 
a block (Fig. 1A). No explicit cue was provided, besides the absence 
of expected reward, to signal rule changes. The task required the rats 
to reach the performance criterion eight times, resulting in seven 
shifts per test session.

Five-choice serial reaction time task
The 5-CSRTT (41) required rats to initiate a trial by nosepoking the 
illuminated food trough at the back of the chamber, then wait 5 s 
before a brief flash of light appeared in one of the five nosepokes on 
the opposite wall of the chamber. The flash of light appeared for 0.5 s 
(stimulus duration), and rats had an additional 5 s (limited hold) to 
nosepoke the aperture that lit up. Rats were reinforced with a single 
reward pellet for each correct response. A 5-s timeout before the 
next trial could be initiated occurred regardless of response type. If 
rats nosepoked too early, nosepoked the wrong aperture, or failed to 
respond within 5 s, the house light extinguished briefly to signify 
failure, rats were not rewarded, and there was a timeout as above.

Surgical approach
Prior work in humans suggests that striatum/internal capsule stimu-
lation’s effects on cognitive flexibility are spatially specific, with the 
greatest effects just dorsal to the ventral striatum/capsule (23). In 
rats, the homologous white matter bundles show a topographic dis-
tribution, such that different subregions of the rat striatum contain 
projections and corticofugal fibers from different PFC components 
(36, 77). Studies of extinction learning found that electrical stimula-
tion enhanced extinction when delivered to a region just dorsal to 
the ventral striatum (38). Considering these prior results, we planned 
to test stimulation at four subtargets within the rat striatum (Fig. 1E): 
midstriatum (1.4 mm AP, ±2.0 mm ML, and −6.0 mm DV), ventral 
striatum (1.3 mm AP, ±2.0 mm ML, and −6.7 mm DV), dorsome-
dial striatum (1.4 mm AP, ±1.8 mm ML, and −4.5 mm DV), or dorso-
lateral striatum (1.4 mm AP, ±3.4 mm ML, and −4.5 mm DV). Each 
of these sites contains both cell bodies of the accumbens/caudate/
putamen and corticofugal axons that project to both the thalamus 
and brainstem (37, 77). Rats were randomly assigned to each im-
plantation group (fig. S1A).

DBS-like electrical stimulation
Electrical stimulation designed to model DBS was performed either 
using a PC running a custom-made LabVIEW program (National 
Instruments, Austin, TX) connected to a NI USB-6343 BNC analog/
digital interface unit (National Instruments), connected in turn to an 
analog stimulus isolator (model 2200, A-M Systems, Sequim, WA), 
or using a PC running an Arduino script connected to a StimJim 
dual-channel electrical stimulator [(81); assembled by Labmaker, 
Berlin, Germany]. We verified that both setups produced equivalent 

output current and waveforms. Parameters for both devices were set 
at 0.3 mA, 130 Hz, bipolar, biphasic, and charge-balanced square 
wave pulses with a pulse width of 50 μs per phase, totaling 100 μs per 
pulse. One hundred thirty hertz was the frequency used in our prior 
human experiments and is a typical human DBS frequency (2, 23, 24).

Statistical analysis
For analysis of primary behavioral and video data, we used generalized 
linear mixed models (GLMMs) to account for the repeated-measures 
design and non-Gaussian distribution of the data. Link functions and 
error distributions were chosen to be appropriate to each specific vari-
able (for example, identity link and gamma distribution for RT). In 
cases where multiple behavioral measures were tested for the same 
purpose, critical P values were adjusted using a Bonferonni correction. 
A detailed accounting of all the variables and interactions used in each 
regression is included in Supplementary Methods.

RLDDMs (42) were fit to both rat and previously collected hu-
man behavioral data (23, 24) using Markov-Chain Monte Carlo with 
the HDDM Python package (82). Four independent chains were run 
for each model, and convergence was confirmed by testing whether 
the Gelman-Rubin statistic (83) was <1.1. The predictive accuracy 
of the models was compared using deviance information criterion 
(DIC). The best model according to DIC was further evaluated using 
posterior predictive checks to assess its ability to account for key fea-
tures of the data. To determine the presence of a stimulation effect 
on model parameters, we assessed the group level distributions for 
the stimulation-specific parameters through two Bayesian statistics: 
the pd and ROPE (84). pd refers to the proportion of the parameter 
distribution greater than 0 with a value above 0.5 (indicating a gen-
eral increase in the parameter) and vice versa for values below 0.5. 
ROPE refers to the fraction of the density of the parameter distribu-
tion that lies within a region that is practically equivalent to a null 
effect. To define our ROPE, we normalized our parameter estimates 
by dividing the group estimate by the pooled SD parameters for the 
baseline parameter and stimulation-specific parameter. Using this 
normalized representation, we set our ROPE to be the region be-
tween ±0.1. pd is used as an indication for the existence/direction of 
an effect, whereas ROPE establishes significance. For the set-shift 
data, we additionally assessed the degree to which three model pa-
rameters (boundary separation, drift rate scaling, and bias scaling) 
could fully explain the observed decrease in reaction time with stim-
ulation either uniquely or in common through a commonality anal-
ysis (85). Extensive details on the background for these models and 
their analysis are included in Supplementary Methods.

Supplementary Materials
The PDF file includes:
Supplementary Methods
Figs. S1 to S14
Tables S1 to S28
References (86–106)

Other Supplementary Material for this manuscript includes the following:
Data file S1
MDAR Reproducibility Checklist
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